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512-cm"' bands of about equal intensity (unperturbed 1 has 
a broad, flat emission presumably involving both the 0,0 and 
512-cm~' bands). However, complexation of Na+causes the 
0,0 emission to be about twice the intensity of the 512-cm-' 
peak, and the K+ and Rb+ effects on 1 fall smoothly between 
the Cs+ and Na+ extremes. Conformational changes in the 
C-11,28 region discussed above could affect the 512-cm-1 

(and/or the superimposed 510-cm-1) normal coordinate 
motions20 and thus cause the changes in phosphorescence 
structure (the same general changes occur in the lower energy 
emission peaks built on the 1379-cm-1 mode). 

Surprisingly, the complexation induced changes in rate 
constants for excited-state processes2 are not correlated with 
crown ether conformational changes. This is so despite the 
dependence of the rate for radiationless decay of the triplet 
(&dt) and S|-T] intersystem crossing (&iSC) on vibrational 
overlap21 and the dependence of the fluorescence rate constants 
(k{) of naphthalene derivatives on vibronic coupling.22 These 
observations are important in judging the usefulness of crown 
ether models like 1 for the study of excited-state perturbation 
by oriented cations. In the case of crown 1 it seems likely that 
conformational^1 independent cation-chromophore interac­
tions are responsible for changes in k[ and other rate constants 
observed upon complexation. Thus those rate constant changes 
may give direct indications of the intrinsic properties of excited 
states and perturbers. 
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A Versatile and Expedient Synthesis of 
a,/3-Unsaturated Ketones. Utilization of the /3-Epoxy 
Sulfone Functional Group as the Enone Progenitor 

Sir: 

In connection with our synthetic program we required ex­
pedient methodology for the preparation of a variety of a,(S-
disubstituted cycloalkenones 1. We specifically desired a 
strategy which would afford products formally derived from 
the doubly charge-inverted ynone synthon 2K2 such that R1 

and R2 could be introduced sequentially as an organolithium 
reagent and an alkylating agent, respectively. 

<CH2W© f ' * 

I (n-5-7) 

Since /3-keto sulfones have recently been shown to be ex­
cellent enone precursors (3 —• I),3 and, also, since oxidation 
of an alcohol to a ketone (4 — 3) should pose no severe limi­
tations, we selected dianion 5 as the target molecule for our 
synthetic efforts. C-Alkylation of 5 would be conceptually 
expected to produce /3-hydroxy sulfone 4 after protonation. 
Dianion 5 is the formal result of a Michael-type reaction of an 
organolithium reagent with 7-oxido a,/3-unsaturated sulfone 
6, a species which should in turn be produced by base-catalyzed 
/3-elimination of /3-epoxy sulfone 7. The entire five-reaction 
sequence (7 — 1) should furthermore be achievable in a "one-" 
or "two-pot" chemical operation without any purification of 
intermediates! 

We are exceptionally pleased to report that this is indeed the 
case. Reaction of/3-epoxy sulfone 7a4'5 (THF, 0.25 M, —78 
0C) with 1 equiv of phenyllithium produces 7-oxido a,/3-un-
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Table I 

<1 
Ia) R'Li(2.l5«q),THF-7B»--IC* 

Ib) R2X(-7B°-RT) 
( C H i ' n ^ s 0 2 C e H 5 Ic) H2Cr207/ether 

Id) DBU 

Epoxy 
sulfone R2 

Overall 
% yield 

(from 7)° 

7a (n = 5) 
7a 
7a 
7a 
7a 

7a 
7a 
7a 
7a 
7b (n = 6) 
7b 
7b 
7b 
7c (n = 7) 
7c 
7c 
7c 

C 6 H 5 

C6H5 

C6H5 

C6Hs 
C6H5 

MC4H9 
HC4H9 

CH3 
CH, 
C6H5 

C6H5 
/1C4H9 
«C4H9 

C6H5 

C6H5 
MC4H9 
«C4H9 

H 
CH3 

CH2C6H5 
CH2CH=CH2 

(CH2)3OSi(CH3)2 
C(CH3), 

H 
CH3 

H 
CH3 

H 
CH3 

H 
CH3 

H 
CH3 

H 
CH3 

12a, 71 
12b, 89 
12c, 80 
12d, 70* 
12e, 60r 

12f, 60 
12g, 66 
12h, 40<* 
12i, 63 
12j, 45 
12k, 45 
121, 56 
12m, 44 
12n, 89 
12o, 70 
12p, 57 
12q, 46p 

a Yields not optimized. * DBU elimination run at 0 0C to prevent 
olefin isomerization. c Oxidation (step Ic) via CrO3-C5H5N.9 

d Mechanical losses associated with product volatility. e DBU elim­
ination run at 1000C, 8h. 

saturated sulfone 8,6 which yields 7-hydroxy sulfone 95-7 (95%) 
upon quenching with saturated ammonium chloride. Repeti­
tion of the above experiment with 2 equiv of phenyllithium6 

(—20 to —30 0 C) , followed by quenching with saturated 

^ S O 2 C 6 H 5 

~ 2b) DBU * 

C R H . 

-R 
I2£ (R=H) 
12MR=CH5) 

aqueous ammonium chloride or methyl iodide, produces hy­
droxy sulfones 11a and l ib , respectively (as a mixture of dia-
stereomers). Two-phase oxidation8-9 of crude hydroxy sulfones 
11a and l ib ( f^C^C^/ether) , followed by elimination of the 
/3-sulfonyl moiety (most often done by directly treating the 
water-washed ether phase of the oxidation reaction with 1.5 
equiv of diazabicycloundecene, DBU), generates enones 12a 
and 12b. Purification of enones 12a and 12b (and subsequent 
examples) is simply effected by filtration through a short plug 
of silica gel to remove sma,ll quantities of polar impurities 
and/or biphenyl. The overall yields1 of 12a and 12b from 7a 
are 71 and 89%, respectively. 

Repetition of the sequence with a variety of simple substrates 
(7a-c), alkyllithium reagents,10 and electrophilic species 
demonstrates considerable generality for this strategy"-12 '13 

(Table I). 
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Palladium Catalyzed Amine Exchange Reaction 
of Tertiary Amines. Insertion of Palladium(O) 
into Carbon-Hydrogen Bonds 

Sir: 

Interaction between a carbon-hydrogen bond and a metal 
center in both heterogeneous1 and homogeneous systems2 are 
currently the subject of much study. We here wish to report 
a novel palladium catalyzed exchange reaction of tertiary 
amines, whose initial step seems to be an insertion of palladium 
into a carbon-hydrogen bond adjacent to the nitrogen, leading 
to a highly active intermediate complex of an iminium ion, to 
which much attention has been paid quite recently.3 

The palladium catalyzed amine exchange reaction of ter­
tiary amines occurs at 200 0C, highly efficiently, as depicted 
below. 

R1R2R3N+ R4R5R6N 
Pd 

R7R8R9N (D 
This process may provide a convenient method for the synthesis 
of unsymmetrical tertiary amines because of high efficiency, 
simplicity, and facile isolation of the desired products by dis­
tillation. In a typical case, a mixture of dibutylhexylamine and 
a catalytic amount of palladium black was reacted in an au­
toclave at 200 0 C for 16 h. Filtration of the palladium catalyst 
followed by distillation gave a mixture of four tertiary amines: 
tributylamine (26%), dibutylhexylamine (37%), butyldihex-
ylamine (24%), and trihexylamine (3%)4 (entry 2 in Table I). 
If tertiary amine R ' 2 R 2 N , for example, is converted into a 
mixture of tertiary amines whose alkyl groups (R1 and R2) are 
distributed statistically, four tertiary amines, R ^ N , R !

2 R 2 N , 
R 1 R ^ N , and R23N could be formed, and the product distri­
bution of R ' m R2

3.m N (m = 0,1, 2, 3) can be calculated by the 
equation of lim„-„ (2«Cm)(„C3.m)/3„C3 at equilibrium. 
Surprisingly, the product yields observed are consistent with 
those calculated by using the equation, as indicated in the 
parentheses in eq 2. Moreover, when an equimolar mixture of 

C4H9-N-C4H9 -~* C4H9-N-C4H9 + C4H9-N-C4H9 
I 200 C I j 

C4H9 C6H13 

26% (3Oy7O) 37% (44%) 

+ C 4 H 9 - N - C 6 H 1 3 + C 6 H 1 3 - N - C 6 H 1 , (2) 

C6H1. 

C6H13 

2 4 % (22%) 

C6H13 

3% (4%) 

tributylamine and trihexylamine was reacted under these 
conditions,5 tributylamine (16%), trihexylamine (16%), di­
butylhexylamine (31%), and butyldihexylamine (31%) were 
obtained, and their yields are also consistent with those cal­
culated statistically, 13, 13, 37, and 37%, respectively (entry 
4). Other examples6 of the exchange reactions of tertiary 
amines are shown in Table I. 

These reactions can be rationalized by assuming Scheme 
I, in which palladium coordinates to nitrogen and undergoes 
insertion into the adjacent C - H bond to give 2, which then 
comes to rapid equilibrium with a key intermediate, an imi­
nium ion complex (3). In support of insertion of palladium into 
the C - H bond of the a position of tertiary amines, recovered 
(S)-(+)-iV,/V-dimethyl-.sec-butylamine (10) was found to have 
~ 1 5 % of the optical rotation of the starting amine upon 

Table I. Product Yields Obtained by Palladium Catalyzed Exchange Reaction of Tertiary Amines (Eq 1)" 

Entry 

1 

2 

3 

4 

5 

R1 

CH3 

C4H9 

C 3H 7 

C4H9 

C4H9 

NR 1R 2R 3 

R2 

C4H9 

C4H9 

C4H9 

C4H9 

C4H9 

R3 

C4H9 

C6Hj3 

C6Hn 

C4H9 

C4H9 

R4 

C 6H 1 3 

C 8H 1 7 

NR 4R 5R 6 

R5 

C6Hi3 

C 8H 1 7 

R6 

C6Hi3 

C 8H 1 7 

R7 

CH3 

CH3 
C4H9 
C4H9 
C 3H 7 

C 3H 7 

C 3H 7 

C 4H 9 
C4H9 
C 4H 9 
C4H9 
C 4H 9 

C4H9 

R8 

CH3 
C 4H 9 

C 4H 9 

C 6H 1 3 

C 3H 7 
C4H9 
C 3H 7 

C 4H 9 

C 6H 1 3 

C 4H 9 

C 6H 1 3 

C 4H 9 

C 4H 1 7 

NR 7R 8R 9 b (% yield 
R9 

CH3 
C 4H 9 

C 4H 9 

C 6H 1 3 

C 3H 7 

C4H9 
C 6H 1 3 

C 6H 1 3 

C 6H 1 3 

C 4H 9 

C 6H 1 3 

C 4H 9 

C 8H 1 7 

(-,4) 
(48, 44) 
(26, 30) 
(24, 22) 
(3,4) 
(10,1/) 
(10,7/) 
(10,//) 
(10,//) 
(16, /J) 
(31, 37) 
(18, 13) 
(30, 37) 

,c % calculated yield1*) 
R7 

CH3 
C4H9 
C4H9 
CeHi3 

C 3H 7 
C4H9 
C 3H 7 

C 3H 7 

C 6H 1 3 
C4H9 
C6H13 
C4H9 
C 8H 1 7 

R8 

CH3 
C 4H 9 

C 4H 9 

C 6H 1 3 

C 3H 7 

C 4H 9 

C 4H 9 

C 6H 1 3 

C 6H 1 3 

C 4H 9 

C 6H 1 3 

C 4H 9 

C 8H 1 7 

R9 

C 4H 9 

C 4H 9 

C 6H 1 3 

C 6H 1 3 

C 4H 9 

C 4H 9 

C6Hi3 

C 6 H ] 3 

C 6H 1 3 

C 6 H ] 3 

C 6 H ] 3 

C 8H 1 7 

C 8H 1 7 

(18,22) 
(25,30) 
(H, 44) 
d, 4) 
(10,//) 
(3,4) 
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a Reaction was carried out at 200 0 C for 16 h. * Satisfactory IR and 1H N M R was obtained for all compounds.c Yield is based upon starting 
amines. All yields are determined by GLC analysis vs. eicosane or tridecane as an internal standard. d Yield in italics is calculated based upon 
the statistical calculation at complete equilibrium. 
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